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ABSTRACT

The recent dual-polarization upgrade to the National Weather Service radar network provides forecasters

with new information to use during operations, yet currently this information is not routinely used to explicitly

make warning decisions. One potential way to increase operational use is to link new radar signatures and

products to existing forecaster conceptual models and the warning decision process. Over the past several

years, a unique dataset consisting of rapid-update (,2-min volumes) radar data of storms over central

Oklahoma has been collected to examine possible links between ZDR columns and forecaster conceptual

models. In total, over 1400 volume scans from 42 storms—ranging from tornadic supercells to nonsevere

multicells—are used to relate ZDR column depth to storm reports and radar signatures typically used to issue

warnings, such as2208C reflectivity core and low-level mesocyclone evolution. After completing the analysis,

the following key operational findings emerged: 1) no clear differences exist between the ZDR column depth

of tornadic and nontornadic mesocyclones, but statistically significant differences do exist between severe and

nonsevere storms, 2) the lead time in advance of severe hail and wind reports provided by peaks in ZDR

column depth is greater than that provided by peaks in 2208C reflectivity cores, 3) increases in ZDR column

size precede increases in 2208C reflectivity core size by about 3.5–9.0min, and 4) rapid-update volumetric

data captures signature evolution several minutes earlier than conventional-update data therefore providing

forecasters more time to anticipate hazards and issue warnings.

1. Introduction

NationalWeather Service (NWS) forecasters consider a

vast amount of information during the warning decision

process, including scientific conceptual models that

help them anticipate impending hazardous weather

(e.g., Andra et al. 2002; Lindley and Morgan 2004).

The recent dual-polarization (dual-pol) upgrade to the

Weather Surveillance Radar-1988 Doppler (WSR-88D)

radar network provides an additional suite of variables

and derived products that could be integrated into

severe-weather conceptual models (NOAA 2013). One

potentially beneficial dual-pol signature is the differential

reflectivity (ZDR) column. This signature may develop

within a convective storm’s updraft as the updraft

perturbs the environmental 08C level upward while

also lofting raindrops above the 08C level. The result

is a quasi-vertical continuous column of enhanced

ZDR (i.e., often greater than 1dB) that can extend well

above the environmental 08C level (e.g., Tuttle et al.

1989; Ryzhkov et al. 1994; Snyder et al. 2015).

Modeling and observational studies (e.g., Ryzhkov

et al. 1994; Kumjian and Ryzhkov 2008; Kumjian et al.

2014; Snyder et al. 2015; Carlin et al. 2017) have shown

that ZDR columns can provide information about the

location and intensity of a storm’s updraft. Specifically,

Kumjian et al. (2014) found a strong relationship be-

tween height of the 2-dB ZDR contour and updraft

magnitude at that height, and Snyder et al. (2015) found

that the deepest ZDR columns were associated with the

strongest updrafts. This connection is relevant to NWS
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forecasters because updraft and/or ZDR column char-

acteristics, such as intensity and size, have been linked to

hail growth potential (e.g., Nelson 1983; Kumjian 2013),

surface precipitation intensity (e.g., Picca and Ryzhkov

2010), tornado intensity (e.g., Van Den Broeke 2017),

lightning activity (e.g., Deierling and Peterson 2008),

and changes in low-level vorticity (e.g., Wicker and

Wilhelmson 1995). Furthermore, changes in ZDR col-

umn height occur prior to the time of maximum updraft

intensity (Snyder et al. 2015) and observed near-surface

hail cores (Picca and Ryzhkov 2010), and can therefore

provide forecasters with additional time to anticipate

storm intensity changes and subsequent impacts to life

and property.

As knowledge about ZDR columns and other dual-pol

signatures increases, it is important to connect that

knowledge with operational practices and conceptual

models to ensure that useful signatures are efficiently

used by decision makers. Conceptual models are an

important piece in the warning decision process and

radar data are the primary tool for detecting storm-

scale features of a conceptual model (e.g., Andra et al.

2002; Brotzge and Donner 2013). In the past, new radar

data has improved existing conceptual models and warn-

ing performance, so a new opportunity potentially exists

with dual-pol radar data (e.g., Burgess et al. 1993; Brotzge

and Donner 2013; Kumjian 2013). However, incorporat-

ing and using new data and tools can be challenging es-

pecially if sufficient background information and training

does not exist and as the potential for data overload

increases (e.g., Brotzge and Donner 2013). To date, re-

search has demonstrated that ZDR columns likely provide

useful information about storm intensity and potential

threats, but little clear information exists to connect

them directly to existing conceptual models and warning

decisions, thereby limiting a forecaster’s ability to le-

verage the full benefits of dual-pol technology during

severe-weather operations (e.g., Kumjian andRyzhkov

2008; Kumjian 2013). Knowledge gaps also exist re-

garding ZDR column evolution in nontornadic super-

cells, column evolution across multiple elevation angles

(i.e., volumetric analysis), impact of radar update time

on accurate sampling of column evolution, and typical

values ofZDR column depth (e.g., VanDenBroeke et al.

2008; Picca et al. 2015; Van Den Broeke 2017).

Therefore, the purpose of this study is to use rapid-

update volumetric radar data to provideNWS forecasters

and researchers with operationally relevant information

about ZDR column depth by quantifying its evolution

across a wide variety of stormmodes and intensities. We

also relate that evolution to signatures forecasters typi-

cally use to issue severe weather warnings (e.g., upper-

level reflectivity cores, mesocyclones, etc.). In addition,

we seek to extend previous work (e.g., Kumjian and

Ryzhkov 2008; Van Den Broeke 2017) by providing

a framework that allows ZDR column signatures to be

integrated into existing forecaster conceptual models

and the warning decision process.

This paper describes the radar data and weather events

used to quantify ZDR column depth evolution (section 2)

and highlights operationally relevant findings (section 3).

A series of subsections within section 3 address findings

regardingZDR columndepth of tornadic and nontornadic

mesocyclones as well as severe and nonsevere storms

(section 3a), the evolution of ZDR column depth relative

to severe hail and wind reports (section 3b), significant

trends in ZDR column depth that could alert forecasters

to changes in storm intensity (section 3c), relationships

betweenZDR column depth and2208C reflectivity cores

and low-level mesocyclones (section 3d), impact of ra-

dar update time on samplingZDR column depth (section

3e), and situations where effective use of ZDR column

depth may be limited in operations (section 3f).

2. Radar data and weather event information

To obtain radar data that can be used as a proxy for

that collected by a future dual-pol phased array radar

(e.g., Zrnić et al. 2007), researchers at theNational Severe

Storms Laboratory have been collecting rapid-update

radar data for a wide variety of events with KOUN, a

dual-pol WSR-88D radar located in Norman, Oklahoma.

Researchers developed specialized volume coverage pat-

terns (VCPs) and performed 908 sector scans to achieve

1.6–2.1-min volumetric updates with relatively high vertical

resolution (i.e., vertical spacing generally less than 1.3km).

Our analysis of ZDR column depth uses 49 storms selected

from 15 different events. Of these storms, seven contained

unusable ZDR column depth data (section 3f), so most

analysis presented in this paper focuses on 13 events that

include 42 storms ranging from severe supercells to non-

severe single cells (Table 1). Of these storms, a majority

were relatively isolated supercells, multicells, or single cells,

but one severe and four nonsevere storms were linear in

nature and one severe storm was a supercell embedded

within a line. All storms were within 150km of KOUN for

TABLE 1. Number of individual storms and volume scans analyzed

for each storm type.

Storm mode/characteristic Count Volume scans

Supercell 22 832

Single cell/multicell 20 587

Severe thunderstorm 25 934

Nonsevere thunderstorm 17 485

Tornadic mesocyclone 17 188

Nontornadic mesocyclone 23 249
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their entire life cycle and many (64%) were within 100km.

A ZDR calibration was performed for every KOUN case

using the presence of dry snow above the environmental

melting layer similar to Picca and Ryzhkov (2012).

Two primary algorithms produced data for analysis.

For ZDR columns, the ZDR column depth algorithm

(Snyder et al. 2015) uses radar data and the environmental

08C height from the Rapid Refresh (RAP) model (e.g.,

Benjamin et al. 2016) to produce a quality-controlled three-

dimensional gridded field of ZDR with a grid spacing of

0.00258 in latitude and longitude and 250m in the vertical.

The algorithm then uses the number of vertically consec-

utive gridswithZDRof 1dBor higher to calculate the depth

of ZDR above the environmental 08C height and outputs

those values as a two-dimensional gridded product of

column depth (Fig. 1a). For upper-level reflectivity cores,

we choose to analyze reflectivity at 2208C because re-

flectivity values at this height can be an important signal

of storm intensity to forecasters (e.g., Nelson 1983; Witt

et al. 1998). To create this field, the ‘‘w2merger’’ algorithm

in the Warning Decision Support System-Integrated In-

formation software (Lakshmanan et al. 2007) uses the

environmental 2208C height from the RAP model to

produce a gridded field of reflectivity at2208Cwith a grid

spacing of 0.00258 in latitude and longitude (Fig. 1b).

3. Radar data analysis

To quantify signature evolution, wemanually extracted

data from the ZDR column depth and 2208C reflectivity

field for each storm over its entire life cycle (i.e., ZDR

column development to dissipation). To assist in differ-

entiating individual storms—especially in instances of

multicell convection, merging storms, or closely spaced

storms—and produce operationally relevant results, we

subjectively identified thresholds and ultimately per-

formed calculations only forZDR column depth of 1000m

or higher and2208C reflectivity of 50dBZ or higher. We

calculated the median, maximum, and size (i.e., cross-

sectional area) of each signature for all available volume

scans encompassing a storm’s life cycle. Since the ZDR

column depth algorithm requires vertical continuity, the

calculated size of algorithm output represents ZDR col-

umn cross-sectional area at the environmental 08C level

and is hereafter referred to as ZDR column size. For

low-level mesocyclone evolution, the velocity differ-

ence across the mesocyclone was calculated at the

elevation angle closest to 3 km above ground level.

This analysis height was chosen—despite it being on

the boundary of what is typically considered as low-

and midlevel—because forecasters frequently look at

elevation angles around this height when diagnosing

mesocyclone intensity to achieve higher warning lead

times since mesocyclones and tornado vortex signatures

are typically observable aloft prior to near the surface

(e.g., Lemon et al. 1978; WDTD 2019).

Individual storms were classified as severe or non-

severe based on whether or not they were associated

with a hail, wind, or tornado report in the National

Center for Environmental Information’s Storm Events

Database at any time during their life cycle. Similarly,

individual mesocyclones were classified as tornadic

or nontornadic based upon the same verification da-

tabase and the occurrence of a tornado report at any

time during their life cycle. Each storm and mesocy-

clone was paired with a storm report based on a manual

examination of the radar data. In a few instances, the

storm report time was changed based on when radar data

indicated a given storm actually moved over the report

location. Despite our best efforts to quality control the

storm reports, limitations still exist with this dataset (e.g.,

Trapp and Wheatley 2006) but it does provide the most

robust method of storm intensity verification available.

a. Typical values of ZDR column depth

The first step in incorporating ZDR column depth

into radar-based conceptual models and therefore the

FIG. 1. Example of (a) ZDR column depth and (b) 2208C re-

flectivity for a storm on 31 May 2013 in central Oklahoma. Range

from radar at center of the images is about 75 km.
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warning decision process is establishing what range of

values can be expected and what values might be im-

portant for anticipating severe weather. The analysis

incorporated over 1400 volume scans of radar data that

span a variety of environmental conditions, stormmodes,

storm intensities, and months (April–October), so the

results presented here could be relevant to a wide variety

of operational situations. However, all data came from

storms in Oklahoma, so these results may be less ap-

plicable to forecast areas outside of the Southern Great

Plains if regional differences exist inZDR column depth.

Consequently, forecasters should be especially aware of

potential differences during events with storm environ-

ments not typically seen in the Southern Great Plains

(e.g., tropical environments) and during winter-season

events since no such events are included in these results.

Extending this work to other geographic regions and

environments is an important aspect of any future

research.

For all storms analyzed, 10th–90th percentile median

ZDR column depth ranged from 1268 to 2190m, maxi-

mum from 1830 to 4003m, and size from 7 to 124km2

(Fig. 2). Additionally, 10th–90th percentilemedian2208C
reflectivity ranged from 51.5 to 55.8dBZ, maximum from

54.6 to 67.3dBZ, and size from 0 (i.e., no 501dBZ core

present) to 233km2 (not shown).

After typical values of a signature are known, an im-

portant question is whether or not the signature can be

used by forecasters to distinguish between tornadic and

nontornadic mesocyclones or severe and nonsevere

storms in real time. We expected severe storms and

tornadic mesocyclones to be associated with stronger

and larger ZDR columns since stronger storms typically

have larger and stronger updrafts (e.g., Nelson 1983;

Wicker and Wilhelmson 1995). To test this hypothesis,

we used a bootstrapping method with replacement (n5
10 000) and two-sample Kolmogorov–Smirnov (KS) tests

to compare statistical differences in the medians and

distributions of the ZDR column depth and 2208C re-

flectivity core metrics (e.g., median, maximum, and

size) associated with all mesocyclones and storms in

this dataset. Very few statistically significant differences

(p , 0.05) existed between the ZDR column depth or

the 2208C reflectivity core metrics of tornadic and

nontornadic mesocyclones, which we did not expect.

Indeed, the two distributions for most signature metrics

featured much overlap with only the two distributions of

median 2208C reflectivity of tornadic and nontornadic

mesocyclones being statistically distinct (p, 0.05, Fig. 3,

Table 2). Despite the statistical significance, substantial

overlap in the distributions would make it very challeng-

ing to use this radar-signature metric to distinguish

between tornadic and nontornadic mesocyclones in

real-time warning decisions (Fig. 3). Therefore, fore-

caster use of other radar metrics, such as low- to mid-

level mesocyclone intensity, is likely the best practice

when issuing tornado warnings.

In contrast, we observed statistically significant differ-

ences between severe and nonsevere storms for all radar

metrics considered as expected. The most statistically

significant differences were observed when comparing

the2208C reflectivity core size of severe and nonsevere

storms (Figs. 4 and 5; Table 2). For ZDR column depth

metrics, the most statistically significant differences

FIG. 2. Histogram of ZDR column depth (a) median value,

(b) maximum value, and (c) size for all volume scans (n 5 1419)

considered in the analysis. Histogram columns are annotated with

the frequency (above), and x-axis labels are the bin midpoints.

Dashed vertical lines represent the 10th and 90th percentile and are

annotated with the corresponding value.
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were observed when comparing the column size of se-

vere and nonsevere storms, but these differences were

less statistically significant than all 2208C reflectivity

core metrics (Figs. 4 and 5; Table 2).

Since statistically significant differences between

the ZDR column depth and 2208C reflectivity cores of

severe and nonsevere storms were common in this sample,

considering the distributions of these radar metrics might

help forecasters distinguish between severe and non-

severe storms, especially when certain thresholds are

exceeded. For example, in this dataset, once ZDR col-

umn size reached 60km2 or maximum ZDR column

depth reached 3100m, at least 71.1% and 66.7% of the

volume scans were associated with severe storms, re-

spectively (Figs. 6a,b). Similarly, once2208C reflectivity

core size reached 75km2 or maximum2208C reflectivity

FIG. 3. Distribution of (a) ZDR column size, (b) median ZDR column depth, (c)2208C reflectivity core size, and

(d) median 2208C reflectivity for all volume scans (n 5 437) of tornadic (red columns) and nontornadic (blue

hatched columns) mesocyclones considered in the analysis. Bin midpoints are included as the x-axis labels.

TABLE 2. Measures of statistical significance for differences between tornadic and nontornadic mesocyclones (tornadic2 nontornadic)

and severe and nonsevere thunderstorms (severe 2 nonsevere). Observed differences larger (in magnitude) than the 95th percentile

bootstrapping method differences or with KS test p values , 0.05 were considered statistically significant and are indicated by **.

Radar signature metric

95th percentile bootstrapping

method differences

Observed difference in radar

signature medians KS test p value

Tornadic vs nontornadic mesocyclones

ZDR column size 8.8 km2 0.9 km2 0.06

Median ZDR column depth 259.2m 25.2m 0.58

Max ZDR column depth 2124.0m 252.7m 0.33

Reflectivity core size 33.3 km2 25.5 km2 0.04

Median reflectivity** 20.2 dBZ 20.3 dBZ ,0.01

Max reflectivity** 20.9 dBZ 20.5 dBZ ,0.01

Severe vs nonsevere thunderstorms

ZDR column size** 5.6 km2 31.2 km2 ,0.01

Median ZDR column depth** 52.8m 193.6m ,0.01

Max ZDR column depth** 130.8m 549.1m ,0.01

Reflectivity core size 8.4 km2 71.4 km2 ,0.01

Median reflectivity** 0.2 dBZ 1.4 dBZ ,0.01

Max reflectivity** 0.8 dBZ 5.2 dBZ ,0.01
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reached 62 dBZ, at least 71.7% and 69.4% of volume

scans were associated with severe storms, respectively

(Figs. 6c,d). In addition, once2208C reflectivity core size

exceeded 125km2 (;73rd percentile) and ZDR column

size exceeded 180km2 (;97th percentile), all storms in

this dataset were severe. Such an observation, potentially

provided by algorithms, combined with trend informa-

tion (section 3c) could signal to a forecaster that a severe

thunderstorm warning may be needed.

Use of any radar-based threshold (e.g., ZDR column

size higher than 60km2) can increase confidence that a

given storm is severe, but radar characteristics of storms

typically occur along a continuous spectrum and rarely

fall neatly into two distinct categories (e.g., Smith et al.

2015). In this dataset, volume scans of severe storms

occurred at nearly every threshold and overlap occurred

between severe and nonsevere storms for all radar met-

rics (Figs. 4–6). For example, if a forecaster used a ZDR

column size threshold of 60 km2 to issue warnings, 71%

of the volume scans in this dataset were associated with

severe storms, but 52% of severe storm volume scans

also fell below this threshold and would therefore be

missed by warnings. In this case, most volume scans

exceeding this threshold were severe, but many severe

storm volume scans did not meet this threshold. This

realization combined with the percentage of severe

storm volume scans at each threshold (Figs. 4 and 6)

could give forecasters a starting point for determining

what thresholds might be most suitable for issuing

severe thunderstorm warnings based on ZDR column

depth. Other warning-decision thresholds (e.g., 50 dBZ

to 30 kft), storm reports, postevent verification, machine

learning methods, and environmental characteris-

tics may also be used to refine this threshold in an

operational setting.

b. Signature evolution relative to severe hail and
wind reports

After determining that ZDR column depth was not

necessarily a better distinguisher of storm severity than

2208C reflectivity cores, we next examined the timing

of signature evolution relative to severe weather reports

for potential operational implications. From an opera-

tional and research perspective, it is important to con-

sider whether or not additional radar signatures provide

enough beneficial information to warrant use during

warning operations especially when many other factors

require forecaster attention (e.g., Andra et al. 2002;

Heinselman et al. 2012; Wilson et al. 2017). Since re-

sults from previous research (e.g., Picca and Ryzhkov

2010; Kumjian et al. 2014; Snyder et al. 2015) suggest

that ZDR columns are an early indicator of updraft and

surface-precipitation intensity, we analyzed ZDR col-

umn depth and 2208C reflectivity core evolution prior

to all severe hail (n 5 21) and wind (n 5 11) reports

where signature metric data were complete. Any report

FIG. 4. As in Fig. 3, but comparing all volume scans of severe (n5 934) and nonsevere (n5 485) storms considered

in the analysis.
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not preceded by at least 15min of KOUN data was not

considered in the analysis.

Peaks (i.e., local maxima) in ZDR column size typically

occurred earlier and more frequently prior to severe hail

and wind reports than peaks in 2208C reflectivity core

size (Fig. 7). This result is not surprising since ZDR col-

umns are associated with developing updrafts whereas

reflectivity cores are associatedwith greater hydrometeor

sizes and concentrations that develop as a result of the

updraft (e.g., Kumjian et al. 2014; Snyder et al. 2015). The

largest lead time in this study occurred with peaks inZDR

column size, where peaks occurred about 7min (median

value) prior to severe hail reports (Fig. 7a) and about

9min (median value) prior to severewind reports (Fig. 7b).

These lead times are somewhat shorter than previous

studies (e.g., Picca and Ryzhkov 2010; Snyder et al.

2015) but we expect they would be longer if based on

increasing trends in signature metrics rather than peak

timing. Peaks in ZDR column size also occurred about

6.5 and 9min earlier than peaks in 2208C reflectivity

core size for severe hail and wind reports, respectively.

About 76% (16/21) of severe hail reports and 82% (9/11)

of wind reports were preceded by a peak in ZDR column

size, whereas only 50% (10/20) of severe hail reports and

22% (2/9) of severe wind reports were preceded by a

peak in 2208C reflectivity core size. Similar patterns

were generally observed when comparing median and

maximum ZDR column depth and 2208C reflectivity,

but these were not as pronounced as those observedwith

signature size (Fig. 7).

The higher frequency of occurrence and additional lead

time provided by ZDR column depth evolution could be

useful to forecasters because it provides them with more

time to interrogate potentially threatening storms and

issue warnings prior to severe weather impacts at the

ground. Using ZDR column depth could also be benefi-

cial because, although 2208C reflectivity core size was

the best discriminator between severe and nonsevere

storms (section 3a), it provided the least amount of lead

time and preceded less than 50%of severe reports, while

ZDR column size provided the longest lead time and

preceded more than 75% of severe reports (Fig. 7). This

difference in lead time is especially noteworthy for severe

wind reports because 2208C reflectivity core sizes pro-

vided zero median lead time for the events in this study.

Therefore, usingZDR columndepth in tandemwith2208C
reflectivity cores could help forecasters more effectively

anticipate impending hazardous weather.

c. Significant signature peaks

Numerous ZDR column depth and 2208C reflectivity

core peaks occurred with the storms analyzed in this

FIG. 5. Violin plots of (a) ZDR column size, (b) median ZDR column depth, (c) 2208C reflectivity core size, and

(d) median2208C reflectivity. The red area of the plot shows the probability density with a greater width indicating

a higher frequency of occurrence. Associated box plots are includedwithin each violin plot for reference. Box edges

are the lower (Q1) and upper (Q3) quartiles, the horizontal black line is the median, and outliers are indicated by

black dots.

AUGUST 2019 KUSTER ET AL . 1179

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/4/1173/4883024/w

af-d-19-0024_1.pdf by N
O

AA C
entral Library user on 11 August 2020



study, but most peaks were short-lived, had low ampli-

tudes (i.e., only small increase in size or median values),

and were not associated with severe weather reports

(i.e., could produce false alarms). Therefore, it could

be challenging for forecasters to determine which in-

creasing trends and peaks are worth paying attention

to during real-time warning operations. As a first look

into addressing this challenge and quantifying ZDR

column depth over operationally relevant time scales,

we calculated the distribution of changes inZDR column

depth metrics over three and five volume scans (about

5.5–9min). This time scale was chosen because many of

the observed peaks occurred in 10min or less and fore-

casters typically make warning decisions about a given

storm in this amount of time.

To highlight trends that might be most relevant to

operations, we calculated thresholds and percentiles

that included at least 75% of the 21 severe hail reports in

this dataset (Table 3). For example, 75% of hail reports

were associated with an increase in ZDR column size of

at least 23.7km2 over three volume scans. This delta value

of ZDR column size was therefore considered significant

and corresponded to the 80th percentile of all changes in

column size over three volume scans (Fig. 8a). Radar

metric delta values with higher percentiles are likely

more relevant to forecasters since the small, low-amplitude,

transient peaks are less likely to be associated with

hazardous weather and could be ignored, which would

allow forecasters to retain special attention for storms

that might pose a greater risk for severe hail at the sur-

face. In this dataset, the highest percentiles occurred with

ZDR column size and 2208C reflectivity core size over

three volume scans (Fig. 8; Table 3). Many instances of

ZDR column size increasing by at least 23.7 km2 also

occurred without a hail report, however, so this analysis

is meant to draw attention toward the upper end of the

observed delta distributions rather than provide an ex-

plicit threshold for warning decisions. A larger sample of

storms and hail reports is needed to better determine

operationally relevant trend thresholds, but this study

provides a potential starting point.

d. Connecting ZDR columns with existing conceptual
models: Evolution relative to 2208C reflectivity
cores and low-level mesocyclones

Scientific conceptual models help forecasters antici-

pate hazards and issue warnings (e.g., Andra et al. 2002),

so we expect that integrating new dual-pol radar signa-

tures and products into existing conceptual models will

result in more effective and more frequent use during

the warning decision process. Therefore, in addition to

examining typical values of ZDR column depth and its

evolution compared to storm reports, we also looked

for relationships between ZDR column depth and radar

FIG. 6. Percent of all volume scans that were associated with severe (red line) and nonsevere (blue line) storms at

various thresholds for (a) ZDR column size, (b) maximum ZDR column depth, (c)2208C reflectivity core size, and

(d) maximum 2208C reflectivity.
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signatures that already exist within forecaster radar-

based conceptualmodels, such as2208C reflectivity cores

and low-level mesocyclones. To do this, we employed lag

correlations to quantify potential relationships between

radar signatures because changes in ZDR column depth

likely occur before changes in 2208C reflectivity cores

(e.g., Knight 2006; Picca and Ryzhkov 2010) and also

perhaps before changes in updraft intensity and therefore

low-level mesocyclones (e.g., Wicker and Wilhelmson

1995). Similarly to section 3a, significance of the lag cor-

relations was done using a bootstrapping method with

replacement (n 5 5000).

The analysis revealed that strong relationships did not

exist between median or maximum ZDR column depth

and2208C reflectivity in this dataset. However, a means

for operationally linking these signatures does appear to

exist when considering signature size. We observed

statistically significant lag correlations for all lags be-

tween 0 and28 volume scans (a negative lag means that

ZDR column size precedes 2208C reflectivity core size),

with the maximum occurring at lag 24 (r 5 0.21; p ,
0.05) and the highest 4 correlations occurring between

lag 22 and lag 25 (Fig. 9a). Assuming an average vol-

ume update time of 1.8min across all KOUN cases,

these lags correspond to lag times of about 7min for the

maximum correlation and about 3.5–9min for the

highest four correlations. Operationally speaking, based

on these data, if a forecaster sees an increase in ZDR

column size, they can expect an increase in 2208C re-

flectivity core size about 3.5–9min later. This additional

time is important in two ways. First, it could give a fore-

caster additional time to interrogate a given storm and

be prepared to issue a warning once critical reflectivity

thresholds are met. Second, if certain thresholds of ZDR

column depth are exceeded (section 3a) and if warranted

by the environmental conditions, a forecaster could have

increased confidence in issuing a warning prior to inten-

sification of the 2208C reflectivity core. In this scenario,

a forecaster would be able to leverage the finding that

peaks in ZDR column size typically occur earlier prior

to severe hail and wind reports than peaks in 2208C
reflectivity core size to potentially increase severe thun-

derstorm warning lead time (section 3b).

Greater volume scan to volume scan consistency (i.e.,

less variability) offers one potential explanation for

why signature size was the only metric to provide an

operationally relevant relationship between ZDR col-

umn depth and 2208C reflectivity cores. The autocor-

relation functions for maximum and especially median

ZDR column depth decreased quickly (not shown),

whereas the autocorrelation function for ZDR column

size decreased more gradually (Fig. 9b). This observa-

tion suggests that there is more variability and fewer

TABLE 3. Trend threshold (delta) and percentile encompassing

75% of severe hail reports for each radar metric considered over

three and five volume scans (about 5.5 and 9min, respectively).

Radar metric (No. of volume scans) Trend threshold Percentile

ZDR column depth size (3) 23.7 km2 80.2

ZDR column depth size (5) 27.3 km2 77.5

Median ZDR column depth (3) 236m 63.5

Median ZDR column depth (5) 282m 64.5

Max ZDR column depth (3) 710m 77.3

Max ZDR column depth (5) 710m 72.8

2208C core size (3) 21.8 km2 78.5

2208C core size (5) 29.1 km2 77.5

Median 2208C reflectivity (3) 1.3 dBZ 76.2

Median 2208C reflectivity (5) 1.5 dBZ 76.0

Max 2208C reflectivity (3) 3.2 dBZ 74.3

Max 2208C reflectivity (5) 3.6 dBZ 73.1

FIG. 7. Boxplot showing amount of time signature peaks oc-

curred prior to (a) severe hail reports and (b) severe wind reports.

Percent of reports preceded by a signature peak and median lead

times are annotated above and within each box, respectively. Box

edges are the lower (Q1) and upper (Q3) quartiles, the horizontal

black line is the median, and the lower and upper whiskers repre-

sent Q1 2 1.5 3 IQR and Q3 1 1.5 3 IQR, respectively, where

IQR is the interquartile range. Blue dots indicate data used in

boxplot creation.
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patterns when looking at median and maximum ZDR

column depth, which helps explain the lack of clear re-

lationships between thosemetrics and2208C reflectivity

cores. This result was also supported when looking at

data for individual storms separately, where patterns

were more readily observed when looking at ZDR col-

umn size rather than median or maximum values. In

agreement with Van Den Broeke (2017) and studies

linking updraft width and hail growth (e.g,, Foote

1984), we believe that it may be important for fore-

casters to pay special attention toZDR column and2208C
reflectivity core size when interrogating radar data. Since

size is a difficult metric to quantify in real time when

looking at radar displays in the Advanced Weather In-

teractive Processing System (AWIPS; e.g., Andra et al.

2002), developing algorithms that can track storms (e.g.,

Lakshmanan et al. 2009), calculate signature size, and

display that information to forecasters within AWIPS is

an important step forward.

We only observed weak relationships (if any) between

ZDR column depth andmesocyclone intensity. Maximum

ZDR column depth provided the most robust relationship

between the signatures. It is possible that maximumZDR

column depth increases at about the same time or up

to two volume scans (about 3.5min) earlier than an

increase in mesocyclone intensity (Fig. 9c). We also

did not observe any clear relationships between ZDR

column depth or 2208C reflectivity core metrics and a

tornado’s enhanced Fujita (EF) scale rating. This result

does differ from that found in Van Den Broeke (2017),

but our sample size is small (17 tornadoes present during

188 volume scans), which likely impacts these results.

FIG. 9. Median (a) lag correlations between ZDR column and

2208C reflectivity core size, (b) autocorrelation function for ZDR

column size, and (c) lag correlations between maximum ZDR col-

umn depth and low-level mesocyclone intensity (i.e., velocity dif-

ference). In (a) and (c), red markers indicate statistical significance

(95% confidence) and negative lag times indicate thatZDR column

depth evolution precedes2208C reflectivity core size and low-level

mesocyclone intensity, respectively.

FIG. 8. Histogram of changes in (a) ZDR column size and

(b) 2208C reflectivity core size over three volume scans (about six

min). Vertical dashed line indicates the threshold at which at least

75% of the hail reports (indicated by black dots) occur and is an-

notated with its value. Histogram columns are annotated with the

bin midpoint (below) and frequency (above).
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Future work could increase the sample size of tornadic

supercells, but it is possible that the greatest operational

benefits of ZDR columns relate to severe and nonsevere

storms rather than tornadic and nontornadic ones.

e. Impact of radar update time

With the ongoing development of rapid-update phased

array radar systems (e.g., Forsyth et al. 2005; Zrnić et al.

2007) and the potential benefits rapid-update data could

provide to forecasters (e.g., Heinselman et al. 2008, 2012;

Wilson et al. 2017), radar update time is an important

factor to consider for operational applications. Since all

data used in this study were ‘‘rapid update’’ (volumetric

update time, 2.1min) compared to conventionalWSR-

88D scanning strategies, this dataset also provides an

opportunity to examine the impact of radar update time

on sampling ZDR column depth and 2208C reflectivity

cores. Therefore, we explored impacts of different vol-

umetric update times on ZDR column depth and 2208C
reflectivity cores by comparing unaltered (volumetric

update time, 2.1min) and degraded (volumetric update

time of 5–6min) KOUN data.

Our analysis showed that rapid-update data were ben-

eficial in capturing a more complete picture of signature

evolution as well as providing additional lead time prior

to severe hail and wind reports. A severe hail-producing,

nontornadic supercell on 9 May 2016 provides one ex-

ample where rapid updates better sampled ZDR column

size evolution (Fig. 10). Beginning at 2031:41UTC, rapid-

update KOUN data showed an increasing trend in ZDR

column size that persisted for the next two volume scans

(about 4min). The degradedKOUNdata—representative

of a forecaster using data with traditional volumetric

update times—did not depict this increasing trend

until about 4min later at 2035:29 UTC. Afterward, a

short period of decreasing ZDR column size occurred,

which caused the degraded KOUN data to show a de-

creasing trend in ZDR column size by 2041:08 UTC.

However, the rapid-update KOUN data showed that the

decreasing trend had ended by this time andZDR column

size was actually rapidly increasing. A forecaster using

degraded KOUN data would not have known about the

increasing trend until 2047:07 UTC. Immediately after

2047:07 UTC, rapid-update KOUN data depicted a clear

decreasing trend that was not sampled by the degraded

KOUN data until about 5.5min later at 2052:48. Based on

the differing sampling of these trends, a forecaster using

rapid-update KOUN data would be aware of a peak in

ZDR column size about four min earlier than if using de-

graded KOUN data. All other factors being equal, the

later sampling of theseZDR column size evolutions could

delay a warning decision and decrease lead time for the

1.75-in. (4.4 cm) hail that occurred at 2057 UTC (Fig. 10).

Rapid-update data provided a more complete picture

of signature evolution, thereby enhancing the prognostic

capability of ZDR columns. For severe hail reports, me-

dian lead time (i.e., time between severe report and

radar-signature peak) of ZDR column size and median

depth was 4.0 and 5.3min longer for rapid-update data

than traditional-update data, respectively (Fig. 11a). For

severe wind reports, median lead time of ZDR column

size andmedian depthwas 7.5 and 7.0min longer for rapid-

update data than traditional-update data, respectively

(Fig. 11b). This additional time could help forecasters

better analyze observed trends and anticipate upcoming

hazards and changes in storm intensity.

FIG. 10. Time series of ZDR column size sampled by rapid-update (,1.9-min volumes)

KOUN data (red line) and degraded (5.6-min volumes) KOUN data (gray line) for a hail-

producing supercell on 9 May 2016. The letter H indicates time of severe hail report.
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Since radar update time impacts how forecasters are

able to identify and analyze storm features, it is impor-

tant to consider volumetric update time when choosing

an operational radar scanning strategy. In instances where

mid- to upper-level features such as ZDR columns,2208C
reflectivity cores, andmidlevel mesocyclones provide vital

information for warning decisions, selecting a scanning

strategy with the fastest volumetric update time would

likely be most beneficial. Scanning strategies such as the

Supplemental Adaptive Intravolume Low-Level Scans

(SAILS; Crum et al. 2013) decrease update time for the

lowest elevation angle, but increase total volumetric up-

date time, so SAILS may not be beneficial in every situ-

ation (Heinselman et al. 2015). This ‘‘trade-off’’ between

more frequent low-level scans and less frequent volume

scans should be considered carefully, since the ability to

analyze mid to upper-level radar signatures and algo-

rithms that require data above the lowest elevation angle

may be negatively impacted when more time is required

to complete a full volume scan. Therefore, it is likely

best for each forecast office and forecaster to generally

consider what radar signatures might be most important

for warning decisions during each phase of storm evolu-

tion and then select WSR-88D scanning strategies ac-

cordingly. Innovative new WSR-88D scanning strategies

and new radar technology, such as phased array radars,

could also decrease volumetric update time and improve

sampling of important midlevel radar signatures.

f. Situations that could limit effective operational use
of ZDR columns

While analyzing this dataset, we noticed some situ-

ations where using ZDR columns to gain more informa-

tion about a storm would likely not be possible. Six

supercells (four ‘‘right movers’’ and two ‘‘left movers’’)

in our study were prolific hail producers and either had

very small or nonexistent ZDR columns. We hypothe-

size that hail falling back into the updraft reduced the

ZDR above the melting layer and prevented the radar

from detecting a robust ZDR column because the pres-

ence of large hail with;0-dBZDRmay havemasked the

presence of raindrops or wet hail with higher ZDR (e.g.,

Kumjian et al. 2014). Forecasters should be aware that

storms producing abundant hail may not exhibit clear

ZDR columns (Fig. 12). Three-body scatter spikes (e.g.,

Lemon 1998) and tornadic debris signatures can also

maskZDR columns and severely reduce the utility of the

ZDR column depth algorithm.

When considering thresholds of ZDR column depth

for warning purposes, forecasters must remain aware

of each storm’s environment—as is good practice in any

situation. One clear example in our dataset occurred on

31 May 2013 when training supercells had similar ZDR

column sizes but produced tornadoes of vastly different

intensity. The leading supercell (‘‘Supercell1’’) produced

an EF3 tornado that was 2.6 mi (4.2km) wide (Bluestein

et al. 2015). The second supercell (‘‘Supercell2’’) pro-

duced a short-lived EF0 tornado despite having a larger

ZDR column size over the storm’s life cycle than the

leading supercell (Fig. 13). We suspect that rain-cooled

outflow from the leading supercell decreased low-level

buoyancy of inflow air for the second supercell leading

to a much weaker low-level mesocyclone and tornado.

This difference and other mesoscale environmental dif-

ferences must be monitored in addition to radar data for

effective and accurate anticipation of hazardous weather

(Andra et al. 2002).

4. Summary

The purpose of this study is to provide NWS fore-

casters with useful information and guidance about the

potential use of ZDR column depth in operations by ex-

amining its evolution over a relatively wide range of

FIG. 11. As in Fig. 7, but comparing time between signature

peaks and severe weather reports between rapid-update (,2-min

volumes) KOUN data and traditional-update (5–6-min volumes)

KOUN data.
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storm modes and intensities and comparing it with

signatures typically used by forecasters during the

warning decision process. Our goal is to help fore-

casters integrate ZDR column information into exist-

ing conceptual models because such an effort is likely

to result in any radar signature being used more often

and more effectively in operations. To that end, after

an analysis of rapid-update dual-pol radar data for

42 storms, we conclude the following for this dataset

of storms in Oklahoma:

1) Distributions of ZDR column depth and2208C reflec-

tivity core metrics are very similar between tornadic

and nontornadic mesocyclones (Fig. 3), so their use is

unlikely to improve tornado warning decision making.

2) Statistically significant differences exist between

severe and nonsevere storms in terms of the ZDR

column depth and 2208C reflectivity core metrics,

indicating that these products can provide forecasters

with information to improve severe thunderstorm

warning decisions.

3) In general,ZDR column size increases prior to increases

in 2208C reflectivity core size and can provide an

additional 3.5–9.0min to interrogate storm characteris-

tics and issue warnings, thereby potentially aiding fore-

casters in increasing severe thunderstorm warning lead

time on the order of about 5min for all storms including

less organized nonsupercell convective modes.

4) TheZDR column size and2208C reflectivity core size

provide a way to relate these signatures and poten-

tially integrate ZDR columns into existing forecaster

conceptual models and by extension, the warning

decision process.

5) TheZDR column size and2208C reflectivity core size

are the best discriminators between severe and

nonsevere storms, provide the longest lead time for

severe hail and wind reports, and are less variable than

FIG. 12. Example of a prolific hail-producing storm on 26 Mar 2017 in terms of (a) reflectivity, (b) ZDR,

(c) correlation coefficient, and (d)ZDR column depth at the 1.408 elevation angle (about 2.5 km above radar level).

White ovals indicate expected location for a ZDR column and output from the ZDR column depth algorithm, but

neither exists perhaps due to hail falling into the updraft and presence of a three-body scatter spike. White curved

line in (a)–(c) is the 50-km range ring, while straight white lines indicate a 308 change in azimuth.

FIG. 13. Violin plots of ZDR column size for two supercells occurring

on 31 May 2013. Violin plot convention is the same as in Fig. 5.
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signature median and maximum, so signature size

could provide forecasters with the most informa-

tion and clearest picture of storm evolution.

6) Rapid-update data (i.e., ,2-min volumes) is advan-

tageous for measuringZDR column depth and2208C
reflectivity cores because it samples signature evolu-

tion earlier and more completely, which provides

additional time for anticipating storm hazards.

There are several important operational considerations

to remember when interpreting and applying the results

of this study. First, despite a relatively wide range of en-

vironments and storm modes considered, all data were

from Oklahoma, so the results may not be generalizable

to other geographic regions. Second, as of the publication

date, a ZDR column depth algorithm is not available op-

erationally. Forecasters would therefore need to examine

all tilts and roughly monitor changes in the depth of the

1.0-dB ZDR isosurface within a ZDR column to identify

deepening columns. One can observe increases in ZDR

column depth prior to changes in upper-level reflectivity

cores without the ZDR column depth algorithm, but the

algorithm provides a means to see depth information

without examining multiple elevation angles and would

save forecasters time especially during active severe

weather events. Therefore, future endeavors should work

to make the ZDR column depth algorithm available to

NWS forecasters in real time. Once available, it is impor-

tant to remember that algorithm output is affected by the

VCP’s vertical resolution, and therefore a storm’s range

from the radar, as well as the radar’s ZDR calibration.

Additionally, the results of this study are based on

rapid-update data (i.e., about 2-min volumes), which are

currently not available to NWS forecasters. However,

we examined typical values, statistical significance be-

tween severe and nonsevere storms, and percentage of

severe and nonsevere storms at various radar metric

thresholds (section 3a) using unaltered and degraded

KOUN data, and the results were similar. This finding

suggests that the conclusions of this study are still rele-

vant to NWS operations today, but rapid-update volu-

metric radar data provides amore complete view ofZDR

column evolution, which could explain the larger ob-

served differences between the ZDR column depth of

severe and nonsevere storms when using rapid-update

KOUNdata. This information, combined with the results

provided in section 3e, suggest that considering new

methods and technologies to decrease radar volumetric

update time will likely benefit NWS warning opera-

tions. Additionally, rapid-update, volumetric, dual-pol

radar data are also likely to benefit convective-allowing

forecast models used in a future Warn-on-Forecast sys-

tem (e.g., Jung et al. 2008; Supinie et al. 2017).
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